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Goal: Twisted triple product periods

These two talks will show how several arithmetic invariants can be viewed
as instances of p-adic twisted triple product periods

where
o Gy(z, 7)) is a family of modular forms, of weight (1,1) at s = 0.
@ f(z) is an elliptic modular form of weight 2.

These arithmetic invariants encompass Gross—Stark units, Stark—Heegner
points, and RM singular moduli.

Upshot. Their interpretation as twisted triple products connects these
p-adic invariants to the p-adic deformation theory of Artin representations,
and makes them approachable / computable. We will discuss applications
to computing p-adic L-functions (joint with A. Lauder).
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@ CM Theory: Classical era
© CM Theory: Gross-Zagier

© Towards an RM Theory?
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Let us begin with the observation, often attributed to Ramanujan, that

™V — 262537412640768743.99999999999925 . . .

Hoax by Martin Gardner

@ Why is this so close to an integer?

e Why is [e™V19] — 744 = 218 .33.53.23%. 293 50 smooth?
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Let us begin with the observation, often attributed to Ramanujan, that

TVI63 — 262537412640768743.99999999999925 . . .

Hoax by Martin Gardner

@ Why is this so close to an integer?
@ Whyis [e™V183] — 744 = 2" . 33. 53. 233 . 293 50 smooth?

@ Why are all its prime factors non-squares modulo 163?

() = () = (5s) = () = (5) =
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Let us begin with the observation, often attributed to Ramanujan, that

TVI63 — 262537412640768743.99999999999925 . . .

Hoax by Martin Gardner

@ Why is this so close to an integer?
@ Whyis [e™V183] — 744 = 2" . 33. 53. 233 . 293 50 smooth?

@ Why are all its prime factors non-squares modulo 163?

() = () = (5s) = () = (5) =

Explanation comes from the theory of complex multiplication.
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Singular moduli I: Classical era

Consider Klein’s modular j-function
j(q) = g7 + 744 + 196884q + 21493760¢° + ...  q= €&

This function satisfies

(az+b . a b
J<Cz+d) = j(2), for all (C d> € SLy(Z).
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Singular moduli I: Classical era

Consider Klein’s modular j-function
j(q) = g7 + 744 + 196884q + 21493760¢° + ...  q= €&

This function satisfies

.(az+b . a b
J <C2+d) = j(2), for all (C d> € SLy(Z).

The values of this function at z € K quadratic imaginary are called
singular moduli. They are always algebraic integers, e.g

j(vV=1) = 1728
(

j(V=5) = 2°.5.(884/5+ 1975)

j(vV=14) = 2? <323—|—228\/§—|—(231—|—161\/§)\/2\/§—1)3

I
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Singular moduli I: Classical era

Consider Klein’s modular j-function
j(q) = g~ ' + 744 + 196884q + 21493760¢> + ...  q= "

This function satisfies

(az+b\ . a b
J <C2+d) = j(2), for all <C d) € SL,(2).

The values of this function at z € K quadratic imaginary are called
singular moduli. They are always algebraic integers, e.g

) = 1728
J(V=5) = 2°-5-(884y/54 1975)

j(v=14) = 2 <323+228\/§+(231+161\6)\/2\/§—1)3

Initial interest centered around their role in explicit class field theory.

i(
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There is a finite list of integer singular moduli!

[ Field | Eq with CM by order of 7 [ i(r) |
Q(v/-1) y'=x>+x 20.3
Q(v/-2) yi=x+x 2¢. 5%
Q(v/-3) Vidxy=x—x"—2x—1 0
Q(v/-7) y' = x>+ 4x* + 2x 3.5
Q(v/=11) | y+y=x—-x*—7x+10 -2
Q(v—19) | y*+y=x>—38x+90 25 .3
Q(v—43) | y*+y = x>—860x + 9707 21%.3.5°
Q(v/—67) | y*+y=x>—7370x + 243528 —2".3.5.171®
Q(/—163) | y* + y = x*> — 2174420x + 1234136692 2'%.3%.5%.23%. 293
Q(v/-1) v =x"—11x+ 14 2317
Q(v/-3) Yy = x> — 15x + 22 2'.3%.53
Q(v/-3) y’ +y=x>—30x+63 2" .3.5°
Q(v/-7) y? = x* — 595x + 5586 3*.5.17°
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There is a finite list of integer singular moduli!

[ Field | Eq with CM by order of 7 [ i(r) |
Q(v/-1) y'=x>+x 20.3
Q(v/-2) yi=x+x 2¢. 5%
Q(v/-3) Vidxy=x—x"—2x—1 0
Q(v/-7) y' = x>+ 4x* + 2x -3*.5
Q(v/=11) | y+y=x—-x*—7x+10 -2
Q(v—19) | y*+y=x>—38x+90 2.3
Q(v—43) | y*+y = x>—860x + 9707 —21%.3.53
Q(v/—67) | y*+y=x>—7370x + 243528 —2".3.5.171®
Q(v/=163) | y* +y = x> — 2174420x + 1234136692 | —2'®-3%.5%.23%.29°
Q(v/-1) v =x"—11x+ 14 2317
Q(v/-3) Yy = x> — 15x + 22 2'.3%.53
Q(v/-3) y’ +y=x>—30x+63 -2".3.5%
Q(v/-7) y? = x* — 595x + 5586 3*.5.17°

This explains the observation on our first slide!

14 /=163
—2™8.33.5%.233.293 = j (+2> = —e™18 4 744 + (very small).
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The Birch-Swinnerton-Dyer conjecture

After World War Il, a renaissance of CM theory took place following the
efforts to investigate the Birch-Swinnerton-Dyer conjecture. This
conjecture predicts a connection between algebraic and analytic invariants
of an elliptic curve. For E/ Q such that E(Q) is of rank r, it asserts that

Qg -Regp - [Ig[ - T],
|E(Q)ror|?

LO(E 1) = r!
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The Birch-Swinnerton-Dyer conjecture

After World War Il, a renaissance of CM theory took place following the
efforts to investigate the Birch—Swinnerton-Dyer conjecture. This
conjecture predicts a connection between algebraic and analytic invariants
of an elliptic curve. For E/ Q such that E(Q) is of rank r, it asserts that

Qg -Regp - [Ig[ - T],
|E(Q)ror|?

LO(E, 1) = r!

Let us explore it in the example
E:y*+xy=x—x*—x+1
which has conductor 58 and j-invariant —3% - 193 /22 . 29,
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Algebraic invariants
Let us explore the example

E:y +xy=x—x*—x+1

@ Periods: Have E ~ C /A where A is the period lattice

A = {[YZyd—T—x : 7€H1(E(C),Z)}

i 2dx o2 2dx
= Z- +Z-
oy VA3 —3x2 —4x+ 4 oy VAx3 —3x? —4x + 4

= Z-(5.4656...)+Z-(2.7328... +i1.1118...)
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Algebraic invariants

o Mordell-Weil: We have E(Q) ~ Z = (Py) where P, = (0, 1).
Its canonical height is easily computed to be

h(Py) ~ 0.04242 . ..
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Algebraic invariants

o Mordell-Weil: We have E(Q) ~ Z = (Py) where P, = (0, 1).
Its canonical height is easily computed to be

h(Py) ~ 0.04242 . ..

e Tamagawa: For every place v of Q, compute ¢, := |E(Q,)/E°(Q,)|.

e v = oo: Unique real component, ¢, = 1.
o v=2findc, =2,and v=19find ¢, = 1.

;o

LA s



Triple product periods in RM theory, Part |
L CM Theory: Classical era

Analytic invariants

One can check easily in this case that E is modular,
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Analytic invariants

One can check easily in this case that E is modular, i.e. there exist two
functions X(7) and Y(7) on the upper half plane that are invariant under

(i (50 ()

Y2 £ XY — XXX,
dX/(2Y + X) = 2rmif(r)dr,

270 iT

such that

where f(7) = ¢+ &¢* + a3¢* + . .. with ¢ = €*™'™, a cusp form of weight

two with Fourier coefficients a, = p + 1 — |E(F,)|.
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Analytic invariants

One can check easily in this case that E is modular, i.e. there exist two
functions X(7) and Y(7) on the upper half plane that are invariant under

o o, (570 ()

Y2 4 XY — X X2 X+1,
dX/2Y + X) = 2xif(r)dr,

such that

270 iT

where f(7) = ¢+ aq® + a3¢® + ... with g = €*™'", a cusp form of weight
two with Fourier coefficients a, = p + 1 — |E(F,,)|. We compute that
X(r) = g 4+q '+3+3¢+7¢+7¢ +14¢" +...
Y(r) = —q?—2¢%—-5¢ "' —8—169—24q" —44¢° + ...
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Analytic invariants

Computing enough terms of X(7) and Y(7) actually proves their existence
(nowadays known by Wiles).
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Analytic invariants
Computing enough terms of X(7) and Y(7) actually proves their existence

(nowadays known by Wiles). This implies that the L-function

a
L(E,s) :== F Re(s) > 3/2
n>1

analytically continues to s € C and satisfies

A(E,s) = 587/%.(2n)7"-T(s)- L(E,s)

o it \ dt
= /M(ﬁ)f?

= —=N\(E,2—5).
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Analytic invariants
Computing enough terms of X(7) and Y(7) actually proves their existence
(nowadays known by Wiles). This implies that the L-function
LEs): =S 2 Re(s)>3/2

57
n>1

analytically continues to s € C and satisfies

A(E,s) = 58/%.(2x)7"-T(s)- L(E,s)
o it \ dt
- o)
= —N\(E,2—5).

This implies that we have

L(E) = 0

Q- h(Py) - || - [T, e
L'(E,1) 0.46370 .~ e A(P0) - Me| - 1], €

[E(Q)or|?

%
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Analytic invariants
Computing enough terms of X(7) and Y(7) actually proves their existence

(nowadays known by Wiles). This implies that the L-function
LEs): =S 2 Re(s)>3/2

ns’
n>1

analytically continues to s € C and satisfies

A(E,s) = 58/%.(2x)7"-T(s)- L(E,s)
o it \ dt
- o)
= —N\(E,2—5).

This implies that we have

L(E,1 = 0 =N
L’EE 1; 0.46370... ~ Qe - h(Py) - |We| - TT, &
, |E(Q)t0r|2

Q
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Analytic invariants
Computing enough terms of X(7) and Y(7) actually proves their existence

(nowadays known by Wiles). This implies that the L-function

a
L(E,s) :== F Re(s) > 3/2
n>1

analytically continues to s € C and satisfies

A(E,s) = 587/%.(2n)7"-T(s)- L(E,s)
o it \ dt
- ()
= —=N\(E,2—5).

This implies that we have

L(E,T) = 0
L'(E, 1) 0.46370. .. ~ 0.46370... 111,

Q
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Heegner points

Xivy, Yy

: —

E(c)
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Heegner points

Xiwy, Yo

— =

E(c)

Suppose we define for any fundamental discriminant D < 0 the set

Qo := {[a,b,c] : b* —4ac =D, 58|a >0} .
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Heegner points

Suppose we define for any fundamental discriminant D < 0 the set
Qo := {[a,b,c] : b* —4ac =D, 58|a >0} .

For any element in Qp the image of 7 := b+f on E is algebraic, defined
over the Hilbert class field of Q(\@) The number of [-orbits on Qp is

Qo /T| = #CI(Q(vVD))

and the images of the corresponding points on E(C) are a full Galois orbit.
In particular, their sum defines a point in E(Q).
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Heegner points
Example 1. When D = —23 we find [116,21, 1] € Q_,; and

—21++/-23
TE——
232

defined over Q(«) where o — a2 4+ 1 = 0. There are 3 orbits on Q_,; for
the action of ', and the sum of the corresponding points is

(0.8774...—i0.7448 ...,—0.2150... 4 i1.3071...)

(0.8774... —i0.7448 ...,—0.215... 4+ i1.3071...) +
(0.8774...4i0.7448...,—0.215... — i1.3071...) +
(—0.7548...,—-0.5698...) = (1,0) = —2ph,
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Heegner points

Example 1. When D = —23 we find [116,21,1] € Q_,3 and
—21 —23
p=2EVES
232

defined over Q(«) where o — a2 4+ 1 = 0. There are 3 orbits on Q_,; for
the action of ', and the sum of the corresponding points is

(0.8774... — i0.7448 ...,—0.2150 ... + i1.3071...)

(0.8774...—i0.7448...,—0.215... 4+ i1.3071...) +
(0.8774...4i0.7448...,—0.215... — i1.3071...) +
(—0.7548...,—0.5698...) = (1,0) = —2P,

Example 2. When D = —71 we find [174,25,1] € Q_7; and
—25 —-71
=2tV
348

which is defined over Q(a) with o’ +a® —a® —a* —a® +a? +2a—1=0.
There are 7 orbits for I, the sum of the corresponding points is 0.

(—0.3448 ... — i1.0787...,2.0250 ... 4 i0.9148 .. )
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Heegner points

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?
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Heegner points

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let us make a more systematic computation. Let us denote

Py = byPy, by €Z

for the Heegner point of discriminant —d.
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Heegner points

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let us make a more systematic computation. Let us denote
Py = byPy, by €Z
for the Heegner point of discriminant —d. We compute

Zbdqd:q4+2q7—q16+q20—2q23—q24—2q28—2q36+3q52—4q63+q64—qgo-‘r...
d>0

Gross—Kohnen-Zagier show that this is the g-expansion of a modular
form of weight 3/2, which is attached to the elliptic curve E under the
Shimura correspondence.

Proof: Make detailed study of height pairings of Heegner points.
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Outline

© CM Theory: Gross-Zagier
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Gross—Zagier (1985)

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?
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Gross—Zagier (1985)

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let 71, 7, be two CM points in the Poincaré upper half plane
Hoo ={z € C:1Im(z) > 0}.

Gross and Zagier find explicit formula for the integer Nm (j(71) — j(72)).
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Gross—Zagier (1985)

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let 71, 7, be two CM points in the Poincaré upper half plane
Hoo ={z € C:1Im(z) > 0}.

Gross and Zagier find explicit formula for the integer Nm (j(71) — j(72)).
For instance, we have

j<1+\/—67>_j(1+\/—163> 15 33 o3
2 2

= —2".3.55. 117+ 2%.3.5%.23%. 29
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Gross—Zagier (1985)

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let 71, 7, be two CM points in the Poincaré upper half plane
Hoo ={z € C:1Im(z) > 0}.

Gross and Zagier find explicit formula for the integer Nm (j(71) — j(72)).
For instance, we have

(252) () |

3 3

RS § RS L S

I
IN)

-237-29

7

-37.5%.7%.13- 139 - 331
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Gross—Zagier (1985)

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let 71, 7, be two CM points in the Poincaré upper half plane
Hoo = {z € C:Im(z) > 0}.

Gross and Zagier find explicit formula for the integer Nm (j(71) — j(72)).
For instance, we have

(252) () |

3 3

23501 42305

I
IN)

-237-29

7

= 2°.3.5°.77.13- 139331

o Algebraic proof: CM elliptic curves, reduces the computation of
ord, to a counting problem in the definite quaternion algebra B.,.

@ Analytic proof: Hecke’s family of Hilbert Eisenstein series.
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1. Algebraic proof

Its g-adic valuation is given in terms of arithmetic intersection number of

a17a23Q(7'1)7Q(7'2) — Boog
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1. Algebraic proof

Its g-adic valuation is given in terms of arithmetic intersection number of

ar, a1 Q(1),Q(r2) — Boog

In above example, for g = 3, have Bso, = (1, x, y, z) with

x? = 72 = =3, y? = —1. We get arithmetic intersection number
Intg(a1,a2) = Z [Ch — bOézb_1]3
beT\RY /T,

= 14+ 14+1+14+142=7
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1. Algebraic proof

Its g-adic valuation is given in terms of arithmetic intersection number of

ar, a1 Q(1),Q(r2) — Boog

In above example, for g = 3, have Bso, = (1, x, y, z) with

x? = 72 = =3, y? = —1. We get arithmetic intersection number
Intg(ahaz) = Z [Ch — bOézb_1]3
beT\RY /T,

= 1+1+1+1+1+2=7
where the pair of embeddings with multiplicity two is given by

{ o : 71+\2/767 — 1+X2+8Z
1. —1+/=763 _ 14Tx—4y
bOZzb e — I —
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1. Algebraic proof

Its g-adic valuation is given in terms of arithmetic intersection number of
Qq, 0 Q(7'1), Q(Tz) — Boog

In above example, for g = 3, have Bso, = (1, x, y, z) with

x? = 72 = =3, y? = —1. We get arithmetic intersection number
Intg(ahaz) = Z [Ch — bOézb_1]3
beT\RY /T,

= 14+ 14+1+14+142=7

where the pair of embeddings with multiplicity two is given by

o : 71+\2/767 s _1+X2+8Z
banb™ - —1+\2/—163 . _1+7);74y

Similarly compute Inty(ay,a0) =9 X 1+ 2+ 2+ 2 = 15, etc.
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2. Analytic proof

Consider real quadratic field F and genus character x defined by:

Q) F o Qm)
~~a
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2. Analytic proof

Consider real quadratic field F and genus character x defined by:

L

e -X\
Q(7) F Q(72)
~—a

Real analytic Hilbert Eisenstein series E5(z;, z,) defined by:

!

Z N 1+2s Z ys
N X(a) Nm(a) (mzi + n)(m' z, + n')|mzi + n|*|m z + n'|*
[a]€CIE (m,n)EaZ/O;<
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2. Analytic proof

Consider real quadratic field F and genus character x defined by:

L

e -X\
Q(7) F Q(72)
~—a

Real analytic Hilbert Eisenstein series E5(z;, z,) defined by:

/ s s
Z N 1+2s Z Y1y2
X(a) Nm(a) (mzi 4+ n)(mM'z, + ') |mz1 + n|*|mM' z, + ' |»
[a]eCl? (m,n)EaZ/O;<

One then computes the Fourier expansion of
@ its diagonal restriction Es(z, z) (vanishes at s = 0)
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2. Analytic proof

Consider real quadratic field F and genus character x defined by:

L

/-X\
Q(n) F o Qn)
~~a

Real analytic Hilbert Eisenstein series E5(z;, z,) defined by:

i S .S
Z N 1+2s Z Y1y2
X(a) Nm(a) (mzi 4+ n)(mM'z, + ') |mz1 + n|*|mM' z, + ' |»
[a]GClF (m,n)EaZ/O;<

One then computes the Fourier expansion of
@ its diagonal restriction Es(z, z) (vanishes at s = 0)
@ its analytic first order derivative with respect to s
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2. Analytic proof

Consider real quadratic field F and genus character x defined by:

L

/‘X\
Q(n) F o Qn)
~~a

Real analytic Hilbert Eisenstein series E5(z;, z,) defined by:

!

E N 1+2s Z Yiy2
x(a) Nim(a) (mzi 4+ n)(mM'z, + ') |mz1 + n|*|mM' z, + ' |»
[a]ect (m,n) € a2/OF

One then computes the Fourier expansion of
@ its diagonal restriction Es(z, z) (vanishes at s = 0)
@ its analytic first order derivative with respect to s
@ its holomorphic projection, contained in M,(SL,(Z)) = {0}.
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2. Analytic proof

Consider real quadratic field F and genus character x defined by:

L
/‘X\

Q(7) F Q(m2)
~— Q -

Real analytic Hilbert Eisenstein series E5(z;, z,) defined by:
/

E N 1+2s Z viys
x(a) Nim(a) (mzi 4+ n)(mM'z, + ') |mz1 + n|*|mM' z, + ' |»
[a]ectf (m,n) € a2/OF

One then computes the Fourier expansion of

@ its diagonal restriction Es(z, z) (vanishes at s = 0)

@ its analytic first order derivative with respect to s

@ its holomorphic projection, contained in M,(SL,(Z)) = {0}.
The first Fourier coefficient is of the form

logNm(j(71) — j(7)) + Zlnt log(q
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Theta lifts

Renaissance after Gross—Zagier saw tremendous developments in the
works of Kudla, Yuan-Zhang-Zhang, Howard-Yang, etc.

Given embeddings of quadratic fields Kj, K, < B into B = M,(Q).
Consider the quadratic space V = B x B with quadratic form
aq b?

[(ahdz), (bh bz)]v = TrL/Q a bS
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Theta lifts

Renaissance after Gross—Zagier saw tremendous developments in the
works of Kudla, Yuan-Zhang-Zhang, Howard-Yang, etc.

Given embeddings of quadratic fields Kj, K, < B into B = M,(Q).
Consider the quadratic space V = B x B with quadratic form

ar by
[(a1,a2), (b1, b2)]v :=Try)q a; b;U
gives a dual reductive pair (T,SL,,f) in Sp(V) where

T = Resrjq (Resl /F(Gm))
= RCSK1/Q(Gm) XGp ResKZ/Q(Gm)/A(Gm)
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Theta lifts

Renaissance after Gross—Zagier saw tremendous developments in the
works of Kudla, Yuan-Zhang-Zhang, Howard-Yang, etc.

Given embeddings of quadratic fields Kj, K, < B into B = M,(Q).
Consider the quadratic space V = B x B with quadratic form

aq b?
a bzd

(a1, a2), (b1, by)lv := Try/q

gives a dual reductive pair (T,SL,,f) in Sp(V) where

T = Res;q (Resl /F(Gm))
= RCSK1/Q(Gm) XGp ResKZ/Q(Gm)/A(Gm)
which is part of a seesaw diagram

0(B) SLy/r

| |
T T SLyjq
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Theta lifts

Renaissance after Gross—Zagier saw tremendous developments in the
works of Kudla, Yuan-Zhang-Zhang, Howard-Yang, etc.

Given embeddings of quadratic fields Kj, K, < B into B = M,(Q).
Consider the quadratic space V = B x B with quadratic form

aq b?
a bzd

(a1, a2), (b1, by)lv := Try/q

gives a dual reductive pair (T,SL,,f) in Sp(V) where

T = Res;q (Resl /F(Gm))
= RCSK1/Q(Gm) XGp ResKZ/Q(Gm)/A(Gm)
which is part of a seesaw diagram

0(B) SLy/r

| |
T T SLyjq
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Outline

© Towards an RM Theory?
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Triple product periods (joint with Darmon and Pozzi)

For a pair of embeddings of

K1 - Q X Q7
K; = Real quadratic with p inert,

into the quaternion algebra B = M,(Q) we obtain a weight (1, 1) form
over F ~ K is associated to an odd unramified character v, with has
Fourier expansion at the cusp 0 given by:

EP(z1,2) = Ly(,0)+4 Y | D0 w()) | e@mitnmtem),

veo ' \ptll(¥)o
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Triple product periods (joint with Darmon and Pozzi)

For a pair of embeddings of

K1 - Q X Q7
K; = Real quadratic with p inert,

into the quaternion algebra B = M,(Q) we obtain a weight (1, 1) form

over F ~ K is associated to an odd unramified character v, with has
Fourier expansion at the cusp 0 given by:

EP(z1,2) = L(w,0)+4 3 | 3 w(n) | et
veo ' \ptll(¥)0
Q: Find p-adic family G(z1, z,) of Hilbert modular forms such that

G()(Z1,Zz) = E1(/jp)(Z1, Zz).
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Triple product periods (joint with Darmon and Pozzi)

All possible families of eigenforms are encoded in a geometric object: The
eigenvariety &, with a natural map 7 : & — # to weight space.
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Triple product periods (joint with Darmon and Pozzi)

All possible families of eigenforms are encoded in a geometric object: The
eigenvariety &, with a natural map 7 : & — # to weight space.

The eigenvariety around the point of weight (1, 1) defined by the
Eisenstein series Eff) was described by Betina-Dimitrov—Shih:

7=
-
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Triple product periods (joint with Darmon and Pozzi)

All possible families of eigenforms are encoded in a geometric object: The
eigenvariety &, with a natural map m : & — # to weight space.

The eigenvariety around the point of weight (1, 1) defined by the
Eisenstein series Efﬁp) was described by Betina—Dimitrov-Shih:

T

Focus: (1) The Eisenstein family in parallel weight (1+s,1+s)
(2) The cuspidal family in anti-parallel weight (14,1 — s).
[DPV1] Diagonal restrictions of p-adic Eisenstein families
[DPV2] On the RM values of the Dedekind—Rademacher cocycle
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Triple product periods (DPV1)

G
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Triple product periods (DPV1)

7= -
o> -

We can consider the Eisenstein family in parallel weight:

Co(z1,2) = Lp(,s)+4 > | D &()Nm(1)* | e@mitatea),

veo ' \ptll(¥)0
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Triple product periods (DPV1)

o
-

We can consider the Eisenstein family in parallel weight:

Gz, ) == Lp(¢,s) +4 > | D w()Nm(1)* | &mitata),

veo ' \ptll(¥)0

It has the features that
o It is completely explicit, can be used to compute p-adic L-functions.
@ By the Gross—Stark conjecture, we get twisted triple product

% <Gs(z, 2), Ez(z)> ~

where uy, is a Gross—Stark unit in Q ® Oy[1/p]*.

= Ly(1),0) = log,(Nm uy,).
0



Triple product periods in RM theory, Part |
|—Towards an RM Theory?

Triple product periods (DPV2)

=



Triple product periods in RM theory, Part |
|—Towards an RM Theory?

Triple product periods (DPV2)

”
Alternatively, we can consider the cuspidal family Gy(z;, z;) in anti-parallel
weight. This family is much more subtle!
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Triple product periods (DPV2)

»
Alternatively, we can consider the cuspidal family Gy(z;, z;) in anti-parallel
weight. This family is much more subtle!

e It is not explicit, and its Fourier coefficients need to be calculated
first, using the p-adic deformation theory of the Galois representation

p=1&v : Gal(F/F) = GLy(Q,).

@ We get a more refined twisted triple product

a% <Gs(z, 2), Ez(z)>

= Iogp(u,/,).
s=0
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