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Triple product periods in RM theory, Part I

Goal: Twisted triple product periods

These two talks will show how several arithmetic invariants can be viewed
as instances of p-adic twisted triple product periods

∂

∂s

〈
Gs(z, z), f (z)

〉∣∣∣∣
s=0
,

where

Gs(z1, z2) is a family of modular forms, of weight (1, 1) at s = 0.

f (z) is an elliptic modular form of weight 2.

These arithmetic invariants encompass Gross–Stark units, Stark–Heegner
points, and RM singular moduli.

Upshot. Their interpretation as twisted triple products connects these
p-adic invariants to the p-adic deformation theory of Artin representations,
and makes them approachable / computable. We will discuss applications
to computing p-adic L-functions (joint with A. Lauder).
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Triple product periods in RM theory, Part I

CM Theory: Classical era

Let us begin with the observation, o�en a�ributed to Ramanujan, that

eπ
√

163 = 262537412640768743.99999999999925 . . .

Hoax by Martin Gardner

Why is this so close to an integer?

Why is deπ
√

163e − 744 = 218 · 33 · 53 · 233 · 293 so smooth?

Why are all its prime factors non-squares modulo 163?(
2

163

)
=

(
3

163

)
=

(
5

163

)
=

(
23
163

)
=

(
29
163

)
= −1

Explanation comes from the theory of complex multiplication.
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CM Theory: Classical era

Singular moduli I: Classical era
Consider Klein’s modular j-function

j(q) = q−1 + 744 + 196884q + 21493760q2 + . . . q = e2πiz

This function satisfies

j
(
az + b
cz + d

)
= j(z), for all

(
a b
c d

)
∈ SL2(Z).

The values of this function at z ∈ K quadratic imaginary are called
singular moduli. They are always algebraic integers, e.g

j(
√
−1) = 1728

j(
√
−5) = 26 · 5 · (884

√
5 + 1975)

j(
√
−14) = 23

(
323 + 228

√
2 + (231 + 161

√
2)

√
2
√

2− 1
)3

Initial interest centered around their role in explicit class field theory.
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CM Theory: Classical era

There is a finite list of integer singular moduli!

Field EQ with CM by order of τ j(τ)

Q(
√
−1) y2 = x3 + x 26 · 33

Q(
√
−2) y2 = x3 + x 26 · 53

Q(
√
−3) y2 + xy = x3 − x2 − 2x − 1 0

Q(
√
−7) y2 = x3 + 4x2 + 2x −33 · 53

Q(
√
−11) y2 + y = x3 − x2 − 7x + 10 −215

Q(
√
−19) y2 + y = x3 − 38x + 90 −215 · 33

Q(
√
−43) y2 + y = x3 − 860x + 9707 −218 · 33 · 53

Q(
√
−67) y2 + y = x3 − 7370x + 243528 −215 · 33 · 53 · 113

Q(
√
−163) y2 + y = x3 − 2174420x + 1234136692 −218 · 33 · 53 · 233 · 293

Q(
√
−1) y2 = x3 − 11x + 14 23 · 33 · 113

Q(
√
−3) y2 = x3 − 15x + 22 24 · 33 · 53

Q(
√
−3) y2 + y = x3 − 30x + 63 −215 · 3 · 53

Q(
√
−7) y2 = x3 − 595x + 5586 33 · 53 · 173

This explains the observation on our first slide!

−218 · 33 · 53 · 233 · 293 = j
(

1 +
√
−163

2

)
= −eπ

√
163 + 744 + (very small).
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CM Theory: Classical era

The Birch–Swinnerton-Dyer conjecture
A�er World War II, a renaissance of CM theory took place following the
e�orts to investigate the Birch–Swinnerton-Dyer conjecture. This
conjecture predicts a connection between algebraic and analytic invariants
of an elliptic curve. For E/Q such that E(Q) is of rank r , it asserts that

L(r)(E, 1) = r! ·
ΩE · RegE · |XE | ·

∏
v cv

|E(Q)tor|2

Let us explore it in the example

E : y2 + xy = x3 − x2 − x + 1

which has conductor 58 and j-invariant −33 · 193/22 · 29.
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CM Theory: Classical era

Algebraic invariants
Let us explore the example

E : y2 + xy = x3 − x2 − x + 1

Periods: Have E ' C /Λ where Λ is the period la�ice

Λ =

{∫
γ

dx
2y + x

: γ ∈ H1(E(C),Z)

}
= Z ·

∫ ∞

α1

2dx√
4x3 − 3x2 − 4x + 4

+ Z ·
∫ α2

α1

2dx√
4x3 − 3x2 − 4x + 4

= Z · (5.4656 . . .) + Z · (2.7328 . . .+ i1.1118 . . .)
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CM Theory: Classical era

Algebraic invariants

Mordell–Weil: We have E(Q) ' Z = 〈P0〉 where P0 = (0, 1).
Its canonical height is easily computed to be

ĥ(P0) ≈ 0.04242 . . .

Tamagawa: For every place v of Q, compute cv := |E(Qv)/E0(Qv)|.
v =∞: Unique real component, cv = 1.
v = 2 find cv = 2, and v = 19 find cv = 1.
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CM Theory: Classical era

Analytic invariants

One can check easily in this case that E is modular,

i.e. there exist two
functions X(τ) and Y(τ) on the upper half plane that are invariant under

Γ :=
〈

Γ0(58) ,
(

0 −1/
√

2√
2 0

)
,
(

0 −1/
√

29√
29 0

)〉
such that {

Y 2 + XY = X 3 − X 2 − X + 1,
dX/(2Y + X) = 2πif (τ)dτ,

where f (τ) = q + a2q2 + a3q3 + . . . with q = e2πiτ , a cusp form of weight
two with Fourier coe�icients ap = p + 1− |E(Fp)|. We compute that

X(τ) = q−2 + q−1 + 3 + 3q + 7q2 + 7q3 + 14q4 + . . .

Y(τ) = −q−3 − 2q−2 − 5q−1 − 8− 16q − 24q2 − 44q3 + . . .
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CM Theory: Classical era

Analytic invariants
Computing enough terms of X(τ) and Y(τ) actually proves their existence
(nowadays known by Wiles).

This implies that the L-function

L(E, s) :=
∑
n≥1

an
ns
, Re(s) > 3/2

analytically continues to s ∈ C and satisfies

Λ(E, s) := 58s/2 · (2π)−1 · Γ(s) · L(E, s)

=

∫ ∞
0

f
(

it√
58

)
ts
dt
t

= −Λ(E, 2− s).

This implies that we have

L (E, 1) = 0

L′(E, 1) ≈ 0.46370 . . . ≈ 0.46370 . . . |XE |
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analytically continues to s ∈ C and satisfies

Λ(E, s) := 58s/2 · (2π)−1 · Γ(s) · L(E, s)

=

∫ ∞
0

f
(

it√
58

)
ts
dt
t

= −Λ(E, 2− s).

This implies that we have

L (E, 1) = 0

L′(E, 1) ≈ 0.46370 . . . ≈ 0.46370 . . . |XE |
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Heegner points

Suppose we define for any fundamental discriminant D < 0 the set

QD :=
{

[a, b, c] : b2 − 4ac = D, 58 | a > 0
}
.

For any element in QD the image of τ := −b+
√
D

2a on E is algebraic, defined
over the Hilbert class field of Q(

√
D). The number of Γ-orbits on QD is

|QD / Γ| = #Cl(Q(
√
D))

and the images of the corresponding points on E(C) are a full Galois orbit.
In particular, their sum defines a point in E(Q).



Triple product periods in RM theory, Part I

CM Theory: Classical era

Heegner points

Suppose we define for any fundamental discriminant D < 0 the set

QD :=
{

[a, b, c] : b2 − 4ac = D, 58 | a > 0
}
.

For any element in QD the image of τ := −b+
√
D

2a on E is algebraic, defined
over the Hilbert class field of Q(

√
D). The number of Γ-orbits on QD is

|QD / Γ| = #Cl(Q(
√
D))

and the images of the corresponding points on E(C) are a full Galois orbit.
In particular, their sum defines a point in E(Q).



Triple product periods in RM theory, Part I

CM Theory: Classical era

Heegner points

Suppose we define for any fundamental discriminant D < 0 the set

QD :=
{

[a, b, c] : b2 − 4ac = D, 58 | a > 0
}
.

For any element in QD the image of τ := −b+
√
D

2a on E is algebraic, defined
over the Hilbert class field of Q(

√
D). The number of Γ-orbits on QD is

|QD / Γ| = #Cl(Q(
√
D))

and the images of the corresponding points on E(C) are a full Galois orbit.
In particular, their sum defines a point in E(Q).



Triple product periods in RM theory, Part I
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Heegner points
Example 1. When D = −23 we find [116, 21, 1] ∈ Q−23 and

τ =
−21 +

√
−23

232
7→ (0.8774 . . .− i0.7448 . . . ,−0.2150 . . .+ i1.3071 . . .)

defined over Q(α) where α3 − α2 + 1 = 0. There are 3 orbits on Q−23 for
the action of Γ, and the sum of the corresponding points is

(0.8774 . . .− i0.7448 . . . ,−0.215 . . .+ i1.3071 . . .) +

(0.8774 . . .+ i0.7448 . . . ,−0.215 . . .− i1.3071 . . .) +

(−0.7548 . . . ,−0.5698 . . .) = (1, 0) = −2P0

Example 2. When D = −71 we find [174, 25, 1] ∈ Q−71 and

τ =
−25 +

√
−71

348
7→ (−0.3448 . . .− i1.0787 . . . , 2.0250 . . .+ i0.9148 . . .)

which is defined over Q(α) with α7 +α6−α5−α4−α3 +α2 + 2α− 1 = 0.
There are 7 orbits for Γ, the sum of the corresponding points is 0.
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CM Theory: Classical era

Heegner points
Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let us make a more systematic computation. Let us denote

Pd = bdP0, bd ∈ Z

for the Heegner point of discriminant −d . We compute∑
d>0

bdq
d = q4 + 2q7 − q16 + q20 − 2q23 − q24 − 2q28 − 2q36 + 3q52 − 4q63 + q64 − q80 + . . .

Gross–Kohnen–Zagier show that this is the q-expansion of a modular
form of weight 3/2, which is a�ached to the elliptic curve E under the
Shimura correspondence.

Proof: Make detailed study of height pairings of Heegner points.
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CM Theory: Gross–Zagier

Gross–Zagier (1985)

Q: Heegner points provide a systematic construction of rational points on
(modular) elliptic curves. But when are they non-trivial?

Let τ1, τ2 be two CM points in the Poincaré upper half plane

H∞ = {z ∈ C : Im(z) > 0}.

Gross and Zagier find explicit formula for the integer Nm (j(τ1)− j(τ2)).
For instance, we have

j
(

1 +
√
−67

2

)
− j
(

1 +
√
−163

2

)
= −215 · 33 · 53 · 113 + 218 · 33 · 53 · 233 · 293

= 215 · 37 · 53 · 72 · 13 · 139 · 331

Algebraic proof: CM elliptic curves, reduces the computation of
ordq to a counting problem in the definite quaternion algebra B∞q .

Analytic proof: Hecke’s family of Hilbert Eisenstein series.
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1. Algebraic proof
Its q-adic valuation is given in terms of arithmetic intersection number of

α1, α2 : Q(τ1),Q(τ2) ↪→ B∞q

In above example, for q = 3, have B3∞ = 〈1, x, y, z〉 with
x2 = z2 = −3, y2 = −1. We get arithmetic intersection number

Int3(α1, α2) =
∑

b∈ Γ1\R×
1 /Γ2

[α1 _ bα2b−1]3

= 1 + 1 + 1 + 1 + 1 + 2 = 7

where the pair of embeddings with multiplicity two is given by{
α1 : −1+

√
−67

2 7→ − 1+x+8y
2

bα2b−1 : −1+
√
−163

2 7→ − 1+7x−4y
2

Similarly compute Int2(α1, α2) = 9× 1 + 2 + 2 + 2 = 15, etc.
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2. Analytic proof
Consider real quadratic field F and genus character χ defined by:

L

F

Q
Q(τ2)Q(τ1)

χ

Real analytic Hilbert Eisenstein series Es(z1, z2) defined by:∑
[a]∈Cl+F

χ(a)Nm(a)1+2s
′∑

(m,n) ∈ a2/O×
F

y s
1y

s
2

(mz1 + n)(m′z2 + n′)|mz1 + n|2s|m′z2 + n′|2s

One then computes the Fourier expansion of
1 its diagonal restriction Es(z, z) (vanishes at s = 0)
2 its analytic first order derivative with respect to s
3 its holomorphic projection, contained in M2(SL2(Z)) = {0}.

The first Fourier coe�icient is of the form

logNm(j(τ1)− j(τ2)) +
∑
q

Intq · log(q)
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Theta li�s
Renaissance a�er Gross–Zagier saw tremendous developments in the
works of Kudla, Yuan–Zhang–Zhang, Howard–Yang, etc.

Given embeddings of quadratic fields K1,K2 ↪→ B into B = M2(Q).
Consider the quadratic space V = B× B with quadratic form

[(a1, a2) , (b1, b2)]V := TrL/Q
∣∣∣∣a1 bσ1
a2 bσ2

∣∣∣∣

gives a dual reductive pair (T, SL2/F ) in Sp(V ) where

T := ResF/Q
(
Res1

L/F (Gm)
)

= ResK1/Q(Gm)×Gm ResK2/Q(Gm)/∆(Gm)

which is part of a seesaw diagram

O(B) SL2/F

SL2/QT
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works of Kudla, Yuan–Zhang–Zhang, Howard–Yang, etc.

Given embeddings of quadratic fields K1,K2 ↪→ B into B = M2(Q).
Consider the quadratic space V = B× B with quadratic form
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∑
n≥1

〈χ1, Tnχ2〉qn
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Towards an RM Theory?

Triple product periods (joint with Darmon and Pozzi)
For a pair of embeddings of

K1 = Q×Q,
K2 = Real quadratic with p inert,

into the quaternion algebra B = M2(Q) we obtain a weight (1, 1) form
over F ' K2 is associated to an odd unramified character ψ, with has
Fourier expansion at the cusp d given by:

E(p)
ψ (z1, z2) := Lp(ψ, 0) + 4

∑
ν∈d−1

+

 ∑
p - I | (ν) d

ψ(I)

 e2πi(ν1z1+ν2z2).

Q: Find p-adic family Gs(z1, z2) of Hilbert modular forms such that

G0(z1, z2) = E(p)
ψ (z1, z2).
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Triple product periods (joint with Darmon and Pozzi)

All possible families of eigenforms are encoded in a geometric object: The
eigenvariety E , with a natural map π : E → W to weight space.

The eigenvariety around the point of weight (1, 1) defined by the
Eisenstein series E(p)

ψ was described by Betina–Dimitrov–Shih:

wt1

wt1

(1,1)

E

W

Focus: (1) The Eisenstein family in parallel weight (1 + s, 1 + s)
(2) The cuspidal family in anti-parallel weight (1 + s, 1− s).

[DPV1] Diagonal restrictions of p-adic Eisenstein families
[DPV2] On the RM values of the Dedekind–Rademacher cocycle
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We can consider the Eisenstein family in parallel weight:

Gs(z1, z2) := Lp(ψ, s) + 4
∑
ν∈d−1

+

 ∑
p - I | (ν) d

ψ(I)Nm(I)s

 e2πi(ν1z1+ν2z2),

It has the features that
It is completely explicit, can be used to compute p-adic L-functions.
By the Gross–Stark conjecture, we get twisted triple product

∂

∂s

〈
Gs(z, z), E2(z)

〉∣∣∣∣
s=0

= L′p(ψ, 0) = logp(Nm uψ).

where uψ is a Gross–Stark unit in Q⊗OH[1/p]×.
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Alternatively, we can consider the cuspidal family Gs(z1, z2) in anti-parallel
weight. This family is much more subtle!

It is not explicit, and its Fourier coe�icients need to be calculated
first, using the p-adic deformation theory of the Galois representation

ρ = 1⊕ ψ : Gal(F/F )→ GL2(Qp).

We get a more refined twisted triple product

∂

∂s

〈
Gs(z, z), E2(z)

〉∣∣∣∣
s=0

= logp(uψ).
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